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ON THE STABILITY OF RANDOMLY SAMPLJZD SYSTEMS 

Abstract 

Randomly sampled l inear  systems with l inea? or non-linear 

feedback loops are  studied by a stochastic Liapunov function method. 

The input, i n  t h i s  paper, i s  assumed zero (driven systems w i l l  be 

t reated i n  a Companion paper), Improved c r i t e r i a  fo r  s t a b i l i t y  

(with probabili ty one, on sth moment 

are  given, when the sequence of holding times are  independent. 

method i s  re la t ive ly  straightforward to apply (especially i n  

comparison with the d i rec t  methods), and allows the study with non- 

l inear  feedback, or non-stationary holding times. A randomly 

sampled Lurg problem i s  studied, 

some interest ing phenomena (such as j i t t e r  s tab i l ized  systems) are  

presented. 

s > 1, or in  mean square) 

The 

Numerical resu l t s  , describing 

1. Introduction 

The paper is  concerned with systems of the  type of Fig. 1, 

where c i s  a row vector, 2 = Ax i s  assumed t o  be asymptotically 

stable, and f(*) may be e i ther  a l i nea r  or non-linear element. The 

case of scalar  valued f and u i s  of main interest ,  although the 

method i s  obviously usable when f and u are  vector valued. The 

sampler samples a t  a sequence of random times 

the  holding intervals  

TIJ . * . J TnJ . . . and 

defined by A = T - 'c are  assumed to be Any n n+l n 
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mutually independent. The input u may be random. I n  t h i s  paper, 

however, u 

system - concerning ergodicity of the outputs (for ergodic 

currence properties, and estimates of the moments of the  output,will 

appear i n  a companion paper. Conditions on A,B,f and {A 

under which various s t a b i l i t y  properties hold, a re  obtained. 

Numerical results,  i l l u s t r a t i n g  some properties of i n t e re s t  are  al- 

so presented. 

systems [l] - [4]. 

perhaps especially i n  sampling fo r  digital-analog conversion where 

some random j i t t e r  i s  involved. 

w i l l  be assumed to be zero. Results for  the  'driven' 

u), re- 

n 

There has been a f a i r  amount of work on such sampling 

The problem occurs i n  several  physical s i tuat ions - 

Past work, e.g. [2], has generally dea l t  with specific, 

f )  cases, and has and re la t ive ly  simple (often scalar  with l inear  

involved (even for scalar  cases with l inear  f )  qui te  d i rec t  and 

very tedious calculations. In  t h i s  paper, an approach based on the 

idea of a stochastic Lhpunov function [3] - 171 i s  taken. All re-  

sults on the  system of Fig. 1 tha t  were available (as known to the 

authors) can be obtained much more easily, and a number of easy ex- 

tensions to the  conditions for s t a b i l i t y  are given. 

non-linear f (see, e.g., the  randomly sampled Lurg problem of 

Section 4)  can sometimes be treated, and 2ath excursion probabil- 

i t i e s  and moment estimates obtained and probabili ty are  convergence 

as well as convergence in  cer ta in  moments can be studied. 

Furthermore, 

I n  addition, 
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it is not necessary that the A be identically distributed. Also, 

as common to Liapunov-function-like methods, perturbation results 

are also possible. 

then so will a slightly perturbed system, 

appear) the estimates (except for ergodicity) for driven systems 

n 

E.g., if a system has a certain type of stability, 

Furthermore (as will 

usually do not even require stationarity of the inputs. 

2, Stability Theorems 

Let u 0. From Fig. 1, 

9 = Ax - KBf(cx(-Cn)) for T nt- 1 > t 4 no 

Let xn, denote x(T~). Then 

AD Aan 
= e  nx n -t A-'(l-e )mf (exn) 

F X + G f(cxn), n n  n 

where the (Fn,Gn) are independent in n. If x is independent 

of {A 1, then the sequence {xn] is easily verified to be a 

(discrete time) Markov process. 

0 

n 

The following stability lemma will 
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be central to the development of the sequel. 

Lemma 1. (For proof see [8] or [TI.) - Let {Yn} e 
Markov process, - and V(Y) a non-negative function. Suppose that 

E;IV(Yn+l) - V(Y) = -k(Y) S 0 ( 3 )  

(where Ey is the expectation given that Y = Y). Then the n 

sequence {V(Yn)] 

V 2 0 so th.at V(Yn) -+ V w.p.1. (with probability one), - and 

is a non-negative super martingale and there is a 

Py[ sup V(Y ) 2 E} 5 V(Y)/€  n w>nzO 

(- where Py is the probability given that Yo = Y). A l s o  

% k(Yn) 5 V(Y) and k(Yn) + 0 w.p.1. (The last statement (k(Yn) -+ 0) 

is merely the Borel-Cantell? Lemma. 

CO 

- 
0 

See [7, p. 711. ) - 

Lemma 2. Suppose the conditions of Lemma 1, except that - 

+Note that V(Y) 2 0 jmplies that y 5 1. 
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EyV(Yn)/(l-y-l)n 3 0 where 0 < r1 < y. 

Proof. The proof i s  similar to t h a t  of [TI ,  Theorem 3, 

p. 86. 

?(x,n) = V(Y)/ (l-y)n 

It is readi ly  ver i f ied  t h a t  ?(x,n) = V ( Y ) / ( l - y  )" and 1 

are (time-dependent) non-negative super-martin- 

gales. The lemma then follows from Lernma 1; j.n par t icu lar  

Next, the  case of l i nea r  f i s  t reated.  L e t  f(a) = a 

(without loss  of generali ty).  Then 

Theorem 1. Suppose t h a t  there  i s  a non-negative function 

V(x)  such t h a t  ExV(xn+l) - V(x) = -k(x) 5 0. Then the  conclusions 

of Lemmas 1' and 2 hold f o r  Y = x 

- 

- n n' 

3. Linear Feedback 

Example 1. Consider t h e  sca la r  l i nea r  system, where 
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k = -ax + KE, B = c = 1. Then An = [(l+K/a)e - K/a], a > 0. 

Let ~(x) = 1x1' 'for some s > 0. Then 

By Theorem 1, a sufficient condition for 

Elx,l 4 . 0  is that 

I x , ~  4 0  w.p.1. and 

Via a more tedious direct method, Leneman [23 succeeded only in 

showing that (8) is sufficient for elx 1 4 0  for s = 2. (In 

fact, it is worth repeating that, if one is interested in w.p.1. 

2 
n 

convergence, the conditions for mean square stability are not 

necessary.) (8) is an improvement over the available result, since, 

as s 40 ,  the range of K for which (8) holds increases. Note 

also that it is not required that either K or the value of a - 
be constant, nor that the An be identically distributed. This 

illustrates another advantage over the direct method. Also by 

Lemma 2, (where 0 < y < 1 is defined by (8)) 
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Intersample Behavior fo r  Example 1. Between samples, 

f o r  random to sat isfying T 2 t 2 T n+l  nJ 

-a (t - T ~ )  
x = [ (l+K/a)e - K/a]x . 
t 'n 

Thus, there  i s  some r e a l  M so t h a t  f o r  any non-random t, lXt l  5 

1 where n ( t )  i s  the T &mediately preceeding the fixed ? n 

t. It w i l l  be shown tha t  fo r  any E > 0 there  i s  a s e t  of paths 

of probabili ty 5 1 - E so  tha t  

f o r  t h i s  set; t h i s  w i l l  imply t ha t  Ixt\ -+ 0 w.p.1. To prove the 

I < E for  suf f ic ien t ly  large t, Ixnit) 

assertion, note that ,  since IX 1 3 0 w.p.l., f o r  any E > 0 there 

i s  an N and a s e t  of paths of probabili ty r 1 - ~ / 2  so  t h a t  fo r  

n 

these paths /XnI  < E for  n 2 N. To complete the demonstration 

note that,  since, fo r  any f i n i t e  N, 

there  is  a T < w so tha t  

P{at l e a s t  N occurrences of sampling by time T) 2 1 - ~ / 2 .  

Observe t h a t  the arguement does not require t h a t  the A 
n 

be ident ical ly  distributed. 
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n Dimensional Linear Systems. Useful Liapunov functions 

other than quadratic forms or functions of quadratic forms have not 

been found for the n-dimensional problem. Nevertheless, some useful 

results can be obtained - especially by comparison with direct 

methods of calculation. 

Theorem 2, Suppose that there are positive definite 

symmetric matrices P - and C so that m;PAn - P = -C. Then 

x 4 0  w.p.l., x 4 0  w.p.1. There is some 1 > r >  0 so - n t 

Px{ sup x;px,(l-y)-n 2 €1 5 X'PX/€. 
m>nlO 

If the An are identically distributed, then the existence of such 

a P and C are necessary as well as sufficient for mean square 

stability (i.ee, for Bn + 0) .  Let the An be identically dis- 

- - 
2 

- 
2 tributed. Let the n dimensional vectors 9 and g denote 

the vectors containing the elements of P and C and write the 

linear operation (on P) 

- 

- 
M;PAn - P = -C - as -&F - 9 = -g. Then a - 

necessary and sufficient condition for mean square stability (and - 
sufficient for w.p.1. stability) is that the eigenvalues of &' are 

inside the unit circle, 

- - 

(Note that, by symmetry of P,C, the vectors 9, g 
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need only be n(n+1)/2 dimensional. Also, t h e  l as t  statement a l so  

follows from the  'Kronecker Product' method, see [ 3 ] ,  [ g ] . )  

woof. Let V(X) = X'PX. Then E ~ v ( x ~ + ~ )  - V(X) = 

x'[mAPAn - PIX = -x'Cx, and the  f i rs t  assertion follows from 

Theorem 1. 

r > 0, C > rP 

Equation (10) follows from Lema 2 since, for some 

i n  the sense t h a t '  C - yP i s  posit ive def in i te .  

Now l e t  An be iden t i ca l ly  dis t r ibuted.  Suppose {xn] is  mean 

square stable; thus Elxnl -> 0 exponentially [g]. Now given C 

posit ive def ini te ,  t he  matrix P defined by 

2 

00 

X'PX = E C < 00 

x O  

I 

y i e lds  a su i t ab le  Liapunov function - hence t h e  f i r s t  necessary 

condition 

From what has been said, it i s  clear t h a t  mean squzre 

s t a b i l i t y  implies t h a t  the i te ra t ion :  

i s  convergent f o r  - any matrix 

i t e r a t i o n  of t he  type 

verge f o r  m y  vector g. Hence t h e  eigenvalues of S? must be 

inside the  uni t  c i rc le .  Id any case, the  convergence of X to 

zero w.p.1. i s  proved exactly as f o r  the  sca la r  casey and the  

Pn+l = EA'P n n n  A + C (with P 0 = C )  

C. 

p n + l =  &% 

Since t h i s  i s  equivalent to an 

+ k?, the  gn must con- 

t 
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de ta i l s  w i l l  not be repeated. Q.E.D, 

Numerical Data, To use Theorem 2, one must choose P, 

then t e s t  the  function x'Px. 

ca l ly  s tab le  with no j i t t e r ,  i.e., when A = A, a r e a l  number. 

men wri te  A = A There i s  a quadratic Liapunov function x*Fx 

for the  system x = A x and the use of t h i s  Liapunov function, 

Suppose the system (6) i s  asymptoti- 

n 

n A' 

n+l  A n' 

i n  the presence o f  j i t t e r ,  yields some useful bounds on the j i t t e r  

with which s t a b i l i t y  i s  guaranteed. In  fact ,  the  following pro- 

cedure was used. Fix the gain K and delay A, and choose C 

posit ive definite,  then compute P SO t h a t  A'PA - P = -C. Then 

add j i t t e r  u n t i l  E"i;PAn - P i s  no longer posi t ive def ini te .  The 

run of Table 1 i s  fo r  the system of Fig. 2 with the j i t t e r  uniformly 

A A  

dist r ibuted with mean A = 1, K = 10, r = 1, r = 2. The j i t t e r  model 

was used i n  order to simulate a system with nominal sampling time 

A and symmetric errors. The holding time error then can be no bigger 

than A. So 2A = 6 i s  the  maximum j i t t e r  allowed. The matrices C 

varied over the family 

1 2 

2 
For each c , a P (for  A = 1, and no j i t t e r )  was computed. Then 

the  corresponding niaximum j i t t e r  J (the supremum of the  values of 
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6 for  which EA'PA - P i s  negative def in i te )  was computed. n n  

2 
C - J = m a x  6 

.40 

.35 

.31 

.26 
-18 
.13 

fo r  s t a b i l i t y  

Table 1. 

For t h i s  problem, the maximum j i t t e r  was computed as 

Hence, the Liapunov derived method yields a satis- about 0.42. 

factory estimate here. 

as c 4 0 .  This suggests t ha t  there  i s  a method of select ing a 

'best '  Liapunov function, but it i s  not yet  understood. 

It i s  worth noting t h a t  the bounds improved 

2 

The data  concerned with the method involving computation 

of the eigenvalues of The gain i s  

plot ted as the  maximum 9 j i t t e r  ( J i t t e r /  (2 average j i t t e r )  = J/2A) 

for which the  system i s  asymptotically s table  ( m . s q  - and, of  course 

W . P . ~ . ) ~  

-d i s  plot ted i n  Figs.'3 - 6. 

The system i s  t h a t  of Fig. 2. There are  several  noteworthy 

aspects of the data, Let r = 1, r2 = 2, K1 = 6. For the  de- 

terminist-ic problem where A E A, the s y i t e m  i s  unstable f o r  holding 

l 

n 
times la rger  than 1.42. 

system i s  s table  f o r  J i t t e r  5 83% or 6 5 1.66. Thus when the random 

In Fig. 3, fo r  K = 6, A = 1, the  stochastic 

hold i s  i n  the  in te rva l  r1.42, l.GG], the  system (a t  t ha t  par t icular  



hold) i s  operating i n  a deterministically unstable region, ye t  it i s  

s table ,  

It i s  interest ing to observe that,  with the  j i t t e r  model 

used, the maximum gain i s  increasingly insensi t ive to the  j i t t e r  

(or, conversely, the maximum allowed j i t t e r  i s  increasingly sensi t ive 

t o  the gain) as A increases. Apparently for  large A = EA a 

s l i gh t  decrease i n  gain allows fo r  a sizeable increase i n  the  allow- 

able j i t t e r ,  However, it i s  surprising tha t  (for A =  2) fo r  only 

a s l i gh t  decrease i n  the gain fo r  which the deterministic system 

(An = A) i s  marginally stable, the random system i s  s table  with 

loo$ j i t t e r .  

Fig. 4), j i t t e r  may have the e f fec t  of s tab i l iz ing  the system. 

ny 

Furthermore, for  large average holds (e.g., A =  2 in  

This 

i s  i l l u s t r a t e d  i n  Fig. 5, where the maximum modulus of the eigenvalues 

of are  plot ted vs. the absolute j i t t e r  6, f o r  EA = A = 2, 

K = 5J6, r = 1, r - 4. 

fo r  6 = 0. A s  6 increases, the maximum modulus f i rs t  decreases, 

n 

Note t h a t  the maximum modulus i s  near unity 1 2 -  

then increases and a t  6 1.85 the  maximum modulus i s  again unity. 

Further elaboration of t h i s  point appears i n  Fig. 6, where 

the maximum modulus of the eigenvalues of 

j i t t e r  6. 

and actual!y does s l i gh t ly  s t ab i l i ze  thp (deterministically unstable) 

-d are  plot ted vs. the 

Note t h a t  the j i t t e r  i n i t i a l l y  does reduce the eigenvalues - 

system. Stabil ization, v i a  the  use of 'white noise' coeff ic ients  does 

occur and i s  understood i n  cer ta in  very simple continuous time problems- 



see examples 1, 2, Chapter 2 of [?I. 
reasons for the  s tabi l izat ion,  however s l i gh t  it is, are not, as yet, 

sa t i s fac tor i ly  understood. It i s  f a i r l y  c lear  t h a t  the  j i t t e r  does 

allow the random holding time to take smaller values than the nominal 

a cer ta in  par t  of the t i m e ,  and tha t  the s tab i l iz ing  e f fec t  of these 

However, i n  the case here, the 

smaller holding times outweighs the unstabil izing e f fec t  of the  longer 

holding times - u n t i l  the  j i t t e r  becomes too large, but a more detai led 

explanation i s  not available. 

4. nonlinear systems 
_. -- 

Although the non-linear problem cannot be t reated to the  

same degree as the l inear  problem owing to t he  lack of sui table  

Liapunov functions fo r  the  deterministic problem (giving necessary 

as well as suff ic ient  conditions) with non-linear feedback, some 

qui te  useful r e su l t s  can s t i l l  be eas i ly  obtained. 

an obvious generalization of the  scalar  case of Example 1 as follows: 

Firs t ,  there  i s  

Example 2. The system i s  

X = e  -“an x - -@-e 1 -“an )Rf(xn) 
n+ 1 n a  

= G x 3- FnKf(Xn). n n  
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Let V(x) = \XI ' ,  and 0 S f(xn)/xn = un 5 u < 00, Then 

Thus, as long as Ku 5 Ku i s  l e s s  than the l e a s t  K which causes 

in s t ab i l i t y  i n  Example 1, there is  asymptotic s t a b i l i t y  here, 

n 
The 

scalar  nature of the  problem made it easy to t r ea t .  

A Sampled Lure Problem. A generic c lass  of important 

problems f o r  which the stochastic Liapunov method (although not the  

d i rec t  method, as developed to date) yields some re su l t s  i s  depicted 

i n  the  (Lurg type problem) of Fig. 7. t The system equations are 

. 
cr = ex 

0 
where A i s  asymptotically stable, f (0)  > 0, 0 5 J f ( a )da  -+ co as 

c + %  00, and 
0 

'Note tha t  C,bn (as well as d to follow) a r e  - row vectors, 



Later, the estimate 

following [lo], Equation 5, w i l l  be used. 

if f i s  l inear.  A straightforward integration of (11) yields 

Note t h a t  (13) i s  exact 

x = A x + anf(un) 

= u - b x + rnf(an) 

n+l n n 

"n+l n n n  

A = e  Ann , a. = A -1 (I-e A4, )m 

bn = cA-l(I-e%) 

r = cA -1 (nnI-A -1 (I-e n )]me 

n n 

An 

n 

For the r e s t  of the development, the Liapunov function (16) 

used i n  [lo] for a discrete  time Lurg problem w i l l  be used, 

where q > 0 and H i s  posit ive def in i te  symmetric. Now, the co- 

e f f ic ien ts  (An, an, bn, rn) are  s t i l l  independent i n  n, and computing 

with (16) gives 



where x = x and B = cr i s  used. Using the estimate (13) i n  (17) gives n n 

(18) 
2 Ex, crv(xn+l> O ~ + S  ) - v(x,rr) s X'CX + 2dxf(cr) + pf (0) 

- H + lqb?b ] C = E[AAHAn 2 n n  

d = Era 

p = E[a'Ha + qrn + -r P 2  3. 
n n  2 n  

Under the condition 

C negative def in i te  

P > dC-ld' 

the, matrix 



i s  negative de f in i t e  and, hence, by Lemmas 1 and 2, (18) and (20) 

imply t h a t  x and 5 -+ 0 w,p.l. Thus the  system i s  asymptotically 

s t ab le  w,p.l, 

proof t h a t  xt -+ 0, 5 -+ 0 w,p.l. as t -+ co i s  done exactly as for 

the  scalar  l i nea r  case. Note, again, t h a t  it i s  not r e a l l y  necessary 

for t he  An to be ident ica l ly  dis t r ibuted.  

n n 
2 Also ,  by Lemmas 1 m d  2, E(x’x +f (5 ) )  -+Om The n n  n 

t 

&ample 3. In  order to show t h a t  t he  condition (20) i s  

not vacuous,a simple example w i l l  be given. I n  general, following 

the  example of t he  l i nea r  case for Table 1, one may do some mild ex- 

perimentation with H and q t o  improve the  Liapuno-v function. 

For the  simple example,let 

e’*= 1/2, and l e t  t he  j i t t e r  be d is t r ibu ted  as i n  Fig. 2b with 

G ( s )  = l / ( l+s) ,  3% = A - .7, so that, 

6 = A p  = .35. 

Then p,d and C , q  and H are  scalars  and the  r e l a t ion  

(equality i n  ( 2 0 ) )  p - d2C-’ = 0 (with constraint  C 5 0) may be 

solved for p i n  terms of q and H. The q and H maximizing the  

allowable range of p (p i s  equivalent t o  the gain K)  may then he 

obtained. I n  the  present case 
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Solving (21b) for p ( in  terms of H/q), and maximizing the p 

yields t h a t . t h e  system of Fig. 7 i s  asymptotically s table  w.p.1. over 

(and also i-n the  mean square sense) i f  

H/q 

I-1 < 0785, 

with the maximizing p and H/q, C i s  negative. 

Repeating the same procedure fo r  no j i t t e r  gives asymptotic s ta-  

b i l i t y  for 

p < 1.31. 
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